A Course in Algebraic Number Theory (Dover Books on Mathematics)
R 725
or 4 x payments of R181.25 with
Availability: Currently in Stock
Delivery: 10-20 working days
A Course in Algebraic Number Theory (Dover Books on Mathematics)
This graduate-level text provides coverage for a one-semester course in algebraic number theory. It explores the general theory of factorization of ideals in Dedekind domains as well as the number field case. Detailed calculations illustrate the use of Kummer's theorem on lifting of prime ideals in extension fields. The author provides sufficient details for students to navigate the intricate proofs of the Dirichlet unit theorem and the Minkowski bounds on element and ideal norms. Additional topics include the factorization of prime ideals in Galois extensions and local as well as global fields, including the Artin-Whaples approximation theorem and Hensel's lemma. The text concludes with three helpful appendixes. Geared toward mathematics majors, this course requires a background in graduate-level algebra and a familiarity with integral extensions and localization.