Banach Lattices and Positive Operators (Grundlehren der mathematischen Wissenschaften)
R 4,377
or 4 x payments of R1,094.25 with
Availability: Currently in Stock
Delivery: 10-20 working days
Please be aware orders placed now will not arrive in time for Christmas, please check delivery times.
Banach Lattices and Positive Operators (Grundlehren der mathematischen Wissenschaften)
Used Book in Good Condition
Vector lattices-also called Riesz spaces, K-lineals, or linear lattices-were first considered by F. Riesz, L. Kantorovic, and H. Freudenthal in the middle nineteen thirties; thus their early theory dates back almost as far as the beginning of the systematic investigation of Banach spaces. Schools of research on vector lattices were subsequently founded in the Soviet Union (Kantorovic, Judin, Pinsker, Vulikh) and in Japan (Nakano, Ogasawara, Yosida); other important contri butions came from the United States (G. Birkhoff, Kakutani, M. H. Stone). L. Kantorovic and his school first recognized the importance of studying vector lattices in connection with Banach's theory of normed vector spaces; they investigated normed vector lattices as well as order-related linear operators between such vector lattices. (Cf. Kantorovic-Vulikh-Pinsker [1950] and Vulikh [1967].) However, in the years following that early period, functional analysis and vector lattice theory began drifting more and more apart; it is my impression that "linear order theory" could not quite keep pace with the rapid development of general functional analysis and thus developed into a theory largely existing for its own sake, even though it had interesting and beautiful applications here and there.