Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models (Chapman & Hall/CRC Texts in Statistical Science)
 Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions.
The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix.
Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.
Country | USA |
Author | Simon Wood |
Binding | Hardcover |
EAN | 9781584884743 |
Edition | 1 |
ISBN | 1584884746 |
IsEligibleForTradeIn | 1 |
Label | Chapman and Hall/CRC |
Manufacturer | Chapman and Hall/CRC |
NumberOfItems | 1 |
NumberOfPages | 410 |
PublicationDate | 2006-02-27 |
Publisher | Chapman and Hall/CRC |
Studio | Chapman and Hall/CRC |
ReleaseDate | 0000-00-00 |