Non-Euclidean Geometry (Dover Books on Mathematics)
Not Available / Digital Item
Please be aware orders placed now may not arrive in time for Christmas, please check delivery times.
Non-Euclidean Geometry (Dover Books on Mathematics)
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry. Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of sufficiently small domains, spherical and analytical geometry, the Klein model, and other topics. Appendixes include a table of values of hyperbolic functions.